

Ocean Response to the Klaus storm (24/25 Jan 2009) in the Bay of Biscay as modelled by Symphonie

G. Herbert, N. Ayoub, F. Lyard, P. Marsaleix Pôle d'Océanographie Côtière (POC), LEGOS, Toulouse

en coll. avec A. Rubio, J. Mader (AZTI)

Objectives

Document and understand the upper ocean's response to the Klaus storm from a numerical simulation

• What are the dynamical and thermal responses of the upper ocean during and just after the passage of the storm Klaus ?

- What are the characteristics of the mixed layer depth and its variability ?
- Is the model able to provide a realistic representation of the upper ocean's response to the storm ?

Estimate the model's sensivity to atmospheric forcing

Model setup and simulations

Symphonie model

3km x 3km, 43 levels (coord. σ generalized) OB et IC : Mercator PSY2V3 Atm. forcing: Aladin (3h) Tidal and pressure forcing 3 rivers (Loire, Garonne, Adour)

Two simulations analyzed:

- S1 from Jun. 2007 to Mar. 2009 - S2 from Dec. 2008 to Mar. 2009
- Different state equations

Different parameters for vertical mixing

OBSERVATIONS

- Puertos del Estado

- 1: Villano Sisargas
- 2: Cabo de Peñas
- 3: Estaca de Bares
- 4: Bilbao Vizcaya

Mouillages AZTI
Coll. A. Rubio, J. Mader
1: Matxitxako
2: Donostia

- ASTEX Coll. L. Marié 1: ASTEX1 2: ASTEX2 3: ASTEX3 4: ASTEX4

METEOROLOGICAL CONTEXT

KLAUS: extreme event characterised by low pressure (~988hPa) and strong winds (~28m/s)

OCEANIC CIRCULATION BEFORE THE STORM

- Cyclonic general circulation

- Anticyclonic and cyclonic eddies

T/S RESPONSE IN THE UPPER 200 m COMPARISON WITH IN SITU PROFILES

Weak SST and salinity response at Donostia

- Slight temperature decrease (<=0.1℃)

- Slight salinity increase (+0.02psu)

Donostia

 \rightarrow Role of earlier mixing event (e.g gale of Jan. 19) ?

 \rightarrow Homogenization of the water column

Strong Eastward current (~0.4m/s) along northern Spanish coast

12h-average zonal current at 4 buoys along Northern Spanish coast

Penas

Sea surface elevation at the coasts

Comparison with tide gauges data (in progress)

Deepening of the mixed layer from SYMPHONIE

MLD (m) at 4 locations on the Klaus storm's pathway

MLD (25/01/09) - MLD (23/01/09)

Vertical shear of the horizontal current

 \rightarrow From the in situ data, Rubio et al (2011) suggest that the current shear in the inertial frequency band is partly responsible for the vertical mixing in winter

<u>OBJECTIVE</u>: What is the contribution of the inertial currents vertical shear to vertical mixing in the model ? Is it consistent with the observations ?

Donostia

-Increase of the current vertical shear during the storm in both the model and data

- Underestimation of the current shear by the model at this location

Temperature profiles:

Very slight cooling during the storm : 0.1°C in surface (above the error bar?)

Large sensitivity of the model to the mixing parameters and initial conditions

Salinity profiles: observations simulation 1 (long run) simulation 2 (short run, enhanced mixing)

Very slight freshening during the storm : 0.05 in surface (above the error bar?)

Too weak SSS in simulation 1
→ impact on the temperature profile
→ due to a SSS bias in initial conditions (PSY2V3) and a too weak mixing?

Comparison with in situ T/S profiles

Model sea surface salinity on Jan 14 and SSH contours

CONCLUSION

Work in progress ...

OCEAN RESPONSE FROM OBSERVATIONS AND MODEL

- Weak temperature and salinity response at Donostia and in the simulation: role of the previous wind gusts in mixing ?

- Mixed layer depth deepens by 150 meters locally.

- **10 cm surge** along the western and northern French coast: to be compared to tide gauges data (work in progress).

- Generation of a strong eastward current along northern Spanish coast
- Increase of vertical current shear at Donostia (weaker than in the observations though).

CONSISTENCY WITH OBSERVATIONS AND LIMITS OF THE MODEL

- **Good agreement with temperature and salinity** signature from mooring buoy data in surface and subsurface: main features of the observed temperature and salinity distribution and time variability well represented.

- Bias in surface salinity (rivers runoff and initial conditions)

□ Investigate the processes involved in the surface layers mixing (vertical current shear, winds, role of inertial currents) and cooling (mixing, heat flux, river runoff...)

□ Analyse the heat flux

Explore the sensitivity of the model response to wind forcing