Tidal front numerical modeling

A. Pasquet, Y. Morel, R. Baraille

SHOM Toulouse, France

Third Epigram Workshop 05.30.2011 - 06.02.2011

Tidal Front modeling in the Iroise Sea

Environmental parameters: Tides Atmospheric flux Topography

Configuration parameters: Diapycnal mixing and barotropic current Stratification Bottom friction Sloping topography

Understanding of front extension mechanisms with MICOM (sensitivity studies such as in Schiller and Kourafalou, 2010)

Efficiency of HYCOM to model the Ushant Front?

PVA^{Slope} mixed water layer, MICOM

Longitude (km)

Reference experiments

Initial configuration parameters:

Diapycnal mixing: $Kv = 0.005 \text{ m}^2/\text{s}$ Stratification: $\Delta \varrho = 0.5 \text{ o/oo}$ No bottom friction (Cd = 0) Slope: $\alpha = 0$ or 25/100000

Baroclinic instability and frontal initial configurations

PVA ↔ mass flux in 2^{nd} and 3^{rd} layers (Haynes and Mac Intyre, 1987, 1990; Morel and Mac Williams, 2000)

Baroclinic instability production and hetons emergence from the ZMP (*Charney Stern Criterion; Morel and Mac Williams, 2000*)

Production rate

Continuous homogenization of the ZMP ruled by Kv Size of structures of instabiliy depending on Δρ

Dispersion mechanisms

Dipolar interactions Mirror effects (near vertical wall) Topographic beta effects Kelvin waves

 α , $\Delta \varrho$, Kv, Cd*d* (*distance from wall*) $\alpha, \Delta \rho$ α

PVA in 2nd layer, centered (flat,slope)

PVA in 2nd layer, coastal (flat,slope)

Flat bottom

Dispersion of homogenized water MICOM academical sensitivity studies : Main results

Academical studies gave information on the impact of realistic environmental parameters on the Ushant Front:

A sloping topography enhances and then reduces dispersion, and shapes the dispersed water in a plume that follows slope gradients

Strong tides have a limited impact on the front extension in areas where dispersive mechanisms are weak

The stratification strengthening in summer is necessary for the front to form and to develop. Production rates of homogenized water, and thus dispersion, drastically depends on this parameter.

Weak uncertainties on bottom friction parametrization can significantly impact the model efficiency to reproduce frontal dynamics. A shift between surface and bottom fronts is modeled. Realistic Tidal Front Modeling The Ushant front variability

Environmental parameters: Tides Atmospheric flux Topography

SST NOAA 09.20.2008

SST MODIS 07.15.2005 (Szekely et al. 2010)

Realistic Tidal Front Modeling

HYCOM parameters

32 layers Grid step: 1.7 km KPP Atmospheric forcing CEP Nesting Mercator

09.20.2008

Edge detection based on a Scharr method, on satellite images (top) and Hycom outputs (bottom)

Aim

1. Correlation between environmental forcings and different front dispersion patterns using HYCOM outputs

2. Assessing the impact of configuration parameters in HYCOM on the front edges

Realistic Tidal Front Modeling Tide filtering : Main features of a new method

Simple method

$$\forall (i, j)$$
, $Ures_{st} = X_0(t) - \sum_f a_f \times \cos(w_f t + phi_f)$

 \rightarrow Errors up to 10% of the global signal

 \rightarrow T is a time span determining the separation between *high and low time scales dynamics*

 \rightarrow The minimization process brings a *quantifiable accuracy* to the method

Realistic Tidal Front Modeling Tide filtering : Method validation (1)

Realistic Tidal Front Modeling *Tide filtering : Input parameters (2)*

80 hrs time span

DATA SET: RES48sedelto_u

48 hrs time span, no diagnostics

Realistic Tidal Front Modeling Wind stress impact on the front edges, september 2009

iroise_delta iroise_res iroise_atm

At the sea surface, a long lasting wind stress induces a quasi permanent westward surfacce current covering the Iroise area.

The circulation along the temperature gradients is retrieved in the low frequency residue.

scilly_delta scilly_res front_delta front_res

Realistic Tidal Front Modeling Wind stress impact on the front edges... in a deeper layer

iroise_atm_I9 iroise_delta_I9 iroise_res_I9

At ~20 m depth, the residue is weaker and deviated from the surface current in large areas.

scilly_delta_l9 scilly_res_l9 front_delta_l9 front_res_l9

Realistic Tidal Front Modeling Other peculiar dynamics of the front in 2009

Conclusions and perspectives

Academical studies informed on the theoretical effect of realistic environmental parameters on the fronts such as *slope gradients, stratification, residual tidal currents and bottom friction.*

The *front edge detection* method and *an accurate frequency filtering tool*, separating tidal and high frequencies induced dynamics from lower frequencies mechanisms, are operational. They are used to *determine different time scales parameters impact on the front extension*. In particular :

- The plume of the Ushant front has a *northern variability* that can cautiously be related to *long lasting wind stress events*.

- Other mechanisms impacting the *initial extension* of the front, *observed extensions southward*, or any peculiar event, are currently investigated.

- Sensitivity studies to the bottom friction parameterization are now considered...

The filtering tool could also be used to highlight and better understand the interrelation between the global circulation and the tidal signal via the bottom friction.

Thank you for your attention

Any question ?

LATITUDE : 48.2N (interpolated) TIME : 22-SEP-2009 00:11

Global dispersion

Diapycnal mixing

Three regimes:

 $T \ll 1 \rightarrow Kv$ limits the dispersion rate, *sub productive regime*

 $T \sim 1 \rightarrow$ Dispersion and production equilibrate, *efficient regime*

 $T >> 1 \rightarrow$ dispersion mechanisms limits the dispersion rate, *auto restrictive regime*

The diapycnal mixing impact on dispersion is limited by dispersive mechanisms ability to clear the ZMP from mixed water.

Global dispersion *Diapycnal mixing and bottom friction*

Most of the friction effect is reached for cd=0.0005, with half of the dispersion rate damped.

Global dispersion Stratification

---- coastal-flat - e - coastal-slope ---- centered-flat - e - centered-slope

Increasing the stratification :

1. Enhances the production rate and the size of structures

2. Weakens the coupling between layers

2nd layer PVA, centered flat experiment

A stronger stratification favors dispersion mixed water.

Realistic Tidal Front Modeling Wind stress impact on the front edges, specific points high time scale current

module(DeltaU), optimized filter

