Wave-induced current in a 3D circulation model

Héloïse Michaud^{1,2},Yann Leredde¹, Patrick Marsaleix², Claude Estournel² and Fabrice Ardhuin³

- I : Géosciences Montpellier2 : Laboratoire d'Aérologie, Toulouse
- 3 : Ifremer, Brest

Context of EPIGRAM

- Improve the knowledge of hydrodynamic phenomena in the surf zone and the inner-shelf
- Application on Biscarosse Beach:
 - Academic test
 - Comparison with previous data -> current study of A.-C. Bennis

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

And extension to other zones ?

Wave effects on the circulation

The main influences of waves on current are:

- On the bottom (Soulsby et al., 1995): modification of the bottom stress
- At the surface (Donelan et al., 1993)
 - Modification of the roughness lenght and the surface stress
 - on turbulent kinetic energy at the surface with an enhancement by wave breaking (Mellor and Blumberg, 2004) and also on mixed layer formation (Craig and Banner, 1994; Rascle and Ardhuin, 2009).
 - Generation of the Stokes
- Additional mean transport in the surface layer that can be parameterized as radiation stresses (Longuet-Higgins and Stewart, 1962; Phillips, 1977).

Momentum Equations

In Symphonie :

$$\frac{\partial \hat{u}}{\partial t} + \frac{\partial u \hat{u}}{\partial x} + \frac{\partial v \hat{u}}{\partial y} + \frac{\partial w \hat{u}}{\partial z} - f \hat{v} + \frac{1}{\rho} \frac{\partial p^{H}}{\partial x} = f V_{s} + \frac{\partial \hat{u}}{\partial x} U_{s} + \frac{\partial \hat{v}}{\partial x} V_{s} - \frac{\partial J}{\partial x} + F_{m,x} + F_{d,x}$$

$$4$$

The TKE is calculated by:

On the bottom

$$\frac{\partial E}{\partial t} + \frac{\partial uE}{\partial x} + \frac{\partial vE}{\partial y} + \frac{\partial wE}{\partial z} - K_z \left[\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right] + \frac{g}{\rho} K_z \frac{\partial \rho}{\partial z} + \frac{\partial}{\partial z} (F_z) - \frac{c_z E^{1.5}}{l_z} \quad \text{Gaspar et al., 1990}$$

• At the surface: $\begin{cases} F_z = \phi_{oc} \text{ near the surface} & \text{Craig & Banner, 1994} & \phi_{oc} = \alpha u_{\star} \\ F_z = K_v \frac{\partial E}{\partial z} \text{ elsewhere} \end{cases}$

mixing length: $l = \kappa z_0$ with $z_0 = 1.6H_s$

Significant wave height of the wind sea only (Rascle et al., 2008)

$$\overrightarrow{\tau_{hot}} = \overrightarrow{\tau_c} \left[1 + 1.2 \left(\frac{|\tau_w|}{|\tau_w| + |\tau_c|} \right)^{3.2} \right]$$
Soulsby et al., 1995
Bottom stress due to
Current Wave

Validation of the model on academic test cases

5 academic tests

- the plane beach of Haas and Warner [2009]
- Leadbetter Beach (Californie, E.U.) de Thornton and Guza [1986]; Wu et al. [1985]
- Experiments of Hamilton and Ebersole [2001] on a laboratory plane beach
- A barred beach from the laboratory experiments of Haller et al. [2002] and Haas et al. [2003]
- Biscarosse Beach in Aquitaine (Bruneau [2009])

Test case $n^{\circ}1$: the plane beach of Haas and Warner (2009)

- Bathymetry:
 - 1200 x1200 m
 - maximal depth:12m
- Wave characteristic :
 - Hs=2m,
 - T=10s,
 - Incidence angle of 10°
 - Modelled by Swan
 - Jonswap type spectral wave field
- Previously modelled by:
 - Haas and Warner (2009) « radiation stress approach »
 - Uchiyama et al. (2010) « vortex force approach »

Cross-shore profile of the significant wave height (m) and breaking dissipation rate

Test case $n^{\circ}1$: the plane beach of Haas and Warner (2009)

Cross-shore profile of the surface elevation (m) in SYMPHONIE (left) and ROMS (right from UMS10). The shoreline is at right.

Test case n°1 : the plane beach of Haas and Warner (2009)

Cross-shore profiles of depth-integrated quasi-eulerian velocities (m.s⁻¹) in SYMPHONIE (left) and ROMS (right from UMS10)

Test case n°1 : the plane beach of Haas and Warner (2009)

Vertical sections of quasi-eulerian velocities (cross-shore on the top and alongshore on the bottom) in SYMPHONIE (left) and ROMS with run b (right from UMS10)

| 13

Test case $n^{\circ}2$: A barred beach with rip current

Test on Biscarosse Beach

Depth integrated velocities

21st February storm in the Têt inner shelf

Models implementation

Bathymetrie of the Têt surf zone

Is it necessary to use all these grids ?

Depth-integrated current at the storm apex on February-2, 2004 at 4h19m, at the TET---scale ²⁸ Depth-integrated current on 02/20 at 11:30 p.m. Location of the three vertical sections is ---- indicated by the horizontal blue lines.-

Depth-integrated current at the storm apex on February 21, 2004 at 4h19m, at the TET 30 scale Depth-integrated current on 02/21 at 3:30 am.

Comparison data/model

Comparison data/model

Simulation sans forçage par la houle

Simulation avec le forçage par la houle

Conclusion & Perspectives

Conclusion:

Implementation and validation of a 3D circulation model forced by a wave model, that can be used from the surf zone to the global scale.

Perspectives:

- Addition of a sediment transport model
- Use of unstructured grids to avoid the boundary effects with Clément Mayet & Florent Lyard (LEGOS)

Unstructured grid in WW3 and circular grid in SYMPHONIE

Thank you !!