On the mixed layer depth in the Bay of Biscay during Spring/Summer 2010

F. Gouillon, Y. Morel, R. Baraille

MLD in May determined from a T°C criteria from *Montégut et al.* (2004)

Previous studies / Context

MLD in May determined from a T°C criteria from *Montégut et al.* (2004)

Relative contributions of the 3 majors terms to the interannual thermal balance in the 0-200 m layer from 40 years numerical experiments (From *Michel et al.*, 2009). Consistent with the results of *Somavilla et al.* (2011)

Mixed layer depth responds to different processes with a highly variable temporal-spatial spectrum

Influence of global pattern and climate processes (NAO, etc.) No influence of Atmospheric forcing on the warm pool? No influence of the mixing at the continental slope/shelf?

- It is not clear what is the contribution of each processes on determining the mixed layer depth in the Bay of Biscay
- Validation of our operational model (Hybrid Coordinate Ocean Model)
- This study pursue the *Michel et al.* (2009) and *Somavilla et al.* (2011) studies but focuses on re-stratification periods
- •MLD climatology of the Bay of Biscay
- •Importance of an accurate simulated MLD for coupling with biogeochemical models

- Set of observations (climatology from *F. Vandermeirsch,* Coriolis database)
- Set of numerical experiment with the Hybrid Coordinate Ocean Model (HYCOM):
 - I. Realistic experiment (reference)
 - II. No advection experiment
 - III. No advection but using currents from the realistic experiment on the vertical mixing scheme
- Determine the MLD with a complex criterion from Lorbacher et al.
 (2006) based on the shallowest extreme curvature of density/temperature profile
- Validate the reference experiment
 Compare the MLD results of each experiments

Coriolis data (May to September, ~200 obs) and Mouton Campaign (May)

Coriolis data (May to September, ~200 obs) and Mouton Campaign (May)

Directional gradients of the different fields will be captured to see trends and global patterns The BobyClim MLD climatology (Vandermeirsch)

from raw data, no Objective Analysis

East-West pattern Weak variability of the MLD during J/J/A

Model SST, Snapshot on the 15th

HYCOM SST and MLD climatology

Model SST, Snapshot on the 15th

MLD (15 days averaged)

July

HYCOM – Section

HYCOM – MLD comparison to profiles

42°N

12°W

9°W

6°₩

00

3°₩

HYCOM – MLD comparison to profile

- Isolating the different processes that contributes to the MLD variability and dynamics:
- Numerical experiment that removes the terms of advection in the equation (Ekman circulation that constrains the velocities)
- No advection but "true" mixing via the use of the realistic experiment velocity in the KPP algorithm

Strong sensitivity of the MLD to the choice of the criterion (temperature? Density?)

MLD in the Bay of Biscay exhibits strong geographical pattern (East-West)

It is possible to determine which process contributes to the deepening of the MLD