On river numerical implementation in OGCMs

- River inflows and their associated buoyant plumes are a major source of nutrients, sediments and contaminants to coastal waters, where they support diverse and productive ecosystems

- Considerable effort has been made to understand the circulation within river plumes (to determine the transport and dispersal of river-borne matter in the coastal zone)

- In the Bay of Biscay rivers are key to understand coastal dynamics: Loire 900 m³/s, Gironde estuary 1080 m³/s, Adour 360 m³/s (yearly mean discharge)

Past studies

"The dynamical behavior of the simplest model inflow, a buoyant discharge into a quiescent rotating basin, is not yet fully understood" - Horner et al. (2006)

Nof and Pichevin (2001) - theory
Yankosvski (2000) and Garvine (2001) - river treatment
Chao (1988) - estuarine circulation of crucial importance
Schiller et al. (2010) - estuarine mixing

2 types of river numerical implementation exist: – Mass flux (NEMO, ROMS, HYCOM) – Salinity Relaxation (POM, NEMO, HYCOM) How does the river numerical implementation impacts the solution of the plume dynamics?

Momentum, buoyancy fluxes, controlling the prescribed discharge

km

$$\alpha_{river} = \frac{h_1^n \delta h_1}{\delta t (h_1^n + \delta h_1)} \approx \frac{\delta h_1}{\delta t} \left(1 - \underbrace{\delta h_1}{h_1^n} \right) \approx \frac{\delta h_1}{\delta t}$$

2) The surface salinity relaxation is vertically redistributed (equally added mass in each layer) (RELAX VERT)

3) A true mass flux (MASS FLUX)

- Dividing the system in a 2-layer flow

Potential vorticity:

$$PV = \frac{\zeta_n + f}{h_n}, \text{ où } \zeta_n = rot(\mathbf{U}) = \partial_x v - \partial_y u \qquad f : \text{fa}$$

f : facteur de Coriolis h_n : épaisseur de la couche n

Potential vorticity anomaly

$$\begin{aligned} \text{PVA} &= \frac{\zeta_n + f}{h_n} - \frac{f}{H_{n_{rest}}},\\ \text{où } H_{n_{rest}} \text{ est l'épaisseur initiale de la couche } n \end{aligned}$$

Cannot use the PVA in the first layer (thickness is zero initially)

 \rightarrow Use of the potential height anomaly

$$PH = \frac{h_n}{\zeta_n + f}$$
$$PHA = \frac{h_n}{\zeta_n + f} - \frac{H_{n_{rest}}}{f}$$

Why using potential vorticity?

- In adiabatic conditions PV / HP are conserved
- Mixing creates PVA/PHA

Losing mass: PVA > 0 \leftrightarrow PHA <0 Adding mass: PVA < 0 \leftrightarrow PHA >0

For geostrophic dynamic:

- knowing the potential vorticity field allows to reconstruct the dynamic of the system
- knowing the dynamic of the system allows to reconstruct the potential vorticity field

a) RELAX_SURF

c) MASS_FLUX

- Fresher water at the surface for the RELAX SURF
- Front location quite similar
- Weaker surface velocities for RELAX SURF
- Higher vertical distribution for RELAX VERT and MASS FLUX

Newly density range created (in estuary)

- Higher occurrences of initial density for the RELAX SURF due to less mixing : bottom waters are not impacted
- Wide tail of density ranges created in RELAX SURF due to the relaxation approach
- RELAX VERT and MASS FLUX are similar !

Upper layer thickness variability

a) RELAX SURF

b) MASS FLUX

m/(12h)

- Homogeneous variability in the RELAX SURF experiment
- Reach a stationnary state
- More variability in MASS FLUX with a decreasing thickness at some times north of the estuary (due to the higher baroclinic behavior)

Upper layer PHA (colored), Lower layer PHA (contoured)

RELAX SURF

MASS FLUX

PHA field (day 3)

PHA field (day 10)

Sensitivity to relaxation spreading

Half estuary

Full estuary

The cyclonic recirculation also exists when spreading the relaxation forcing

Conclusion

- **Documentation** of the impact of river numerical implementation has been made
- Mixing and geometry of the basin are critical for near and far field circulation circulation
- **RELAX VERT = MASS FLUX** for this specific configuration (geostrophic adjustement dominates)
- PV diagnostics allows an explanation for the river plume dynamics

- Sensitivity tests have been performed but not yet fully analyzed (model horizontal and vertical resolution, lateral conditions, mixing schemes, etc.)

- Future work includes adding analytical tides and wind forcing to this configuration and realistic studies

Is the Adour a good choice for application (weak tides, discharge and forcing, coast geometry)?

A realistic case: Gironde

North-westerly winds (reversal) during Spring with weak discharge: favor the advection of river plume to the open ocean and South (*Lazure and Jégou* 1998, *Hermida et al.* 1998) which last all Summer.

A realistic case

North-westerly winds (reversal) during Spring with weak discharge: favor the advection of river plume to the open ocean and South (*Lazure and Jégou* 1998, *Hermida et al.* 1998) which last all Summer.

