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Introduction

● Bottom friction 
generally represented 
by a quadratic or a 
linear formulation :
 

● CD and CL often 
considered as 
constants

● Need for a more 
physically consistent 
approach in coastal 
areas

=−CD∣u∣u

=−CLu



  

Model Configuration

● HYCOM in a pure barotropic configuration (one isopycnal 
layer)

● Horizontal resolution: 5.5 km

● Sea-surface elevations and 2D velocities (from the 
NEA2004 tidal atlas) prescribed along the open boundaries

● Bottom drag formulation : 

Friction coefficient computation based on vertical 
integration of the turbulent velocity profile: 

=
−C D∣u∣u

H

CD=


ln Hz0
−1 

2

κ : Von Kármán constant
z0 : bottom roughness
H : water height  



  

Algorithm for parameter estimation

● Simultaneous Perturbation Stochastic Approximation 
(SPSA, Spall (1998))

● Iterative algorithm :

● Gradient estimation with two loss function 
measurements :

k1=
k−ak gk 

k 

gki=
J  kckki−J  k−ckki

2ckki

→ Computational cost per iteration independent of 
the dimension problem 

ki={ 1 , probability 1/2
−1 , probability 1/2



  

Results : twin experiments

● “Observations” obtained with direct model integration

● Estimated parameter: z0 (bottom roughness)

● Considerable problem dimension: parameter estimation 
only for some points (hereafter colocation points), and 2D 
reconstruction using interpolation

● Description of an iteration : 
- 2 perturbed runs and associated loss function 
evaluations
- Gradient computation and updating of the estimated 
parameter
- 1 run with the new parameter distribution to evaluate 
the improvement or the deterioration in terms of loss 
function



  

Results : one degree of freedom

● “Observations” obtained with a uniform z0 distribution : 
z0=8mm

● Only one tidal component: M2 (lunar semi-diurnal, most 
important component for the area) 

● Uniform variation of z0 (only one colocation point)

● Choices for ak and ck :

ck=
0.005

k1.210

ak=
0.003

k 0.610
k1=k−ak gk  k 

gki=
J  kckki−J  k−ckki

2ckki



  

Results : one degree of freedom

J=0.5∑
t=1

T

∑
i=1

N

SSHmod i , t−SSHobsi ,t 
2

● Assimilation window : 3.25 days 
- Two days to enable the system to be in 
equilibrium with the imposed perturbation
- Loss function computation during two periods of 
M2 (24.84 h)

● Loss function calculated with SSH only 
(observations are supposed to be available at each 
grid point)

● Need for a modification of the algorithm: gradient 
normalization when parameter is updated (gradient 
is normalized by the maximum gradient of the 
previous iterations)  



  

Results : one degree of freedom

Two cases:
● start with z0 = 5 mm 
● start with z0 = 11 mm 

Final value :  z
0
 = 7.999966 mm 

Final value :  z
0
 = 8.000005 mm 



  

Results : several degrees of freedom

● 42 colocation points

● Start with uniform z0 = 5mm  

● Modified perturbations amplitudes (ck): standard deviation of the 
parameter for the last N iterations (here N=20)



  

Results : several degrees of freedom



  

Results : several degrees of freedom



  

Results : several degrees of freedom

● “Observations” obtained with a variable z0 distribution 
(gaussian distribution)



  

Results : several degrees of freedom



  

Results : several degrees of freedom



  

Conclusions and perspectives

● SPSA algorithm easy to implement and 
appropriate for this study 

● Realistic experiments:
- use of diverse data sources: tide gauges, 
ADCP moorings, satellite data (coastal 
products), HF radars
- link between optimal z0 distribution and a 
physical reality
- quantification of the contribution of specific 
data, especially HF radars in the Iroise Sea
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